Roofing slates of the world part III

Images of hand specimens and thin sections of slates from several world´s locations. Real color of the specimens may vary with respect of shown in the images.

Pizarras del Mundo03

13. Slate from Penrhyn, Wales, UK. This slate is extracted at the historic quarry of Penrhyn, and is very popular in historical buildings all over the UK. The green spots correspond to zones with reduced iron and high contents of Ca and Mg (Borradaile et al. 1990). This color change can be seen in the microphotograph of 200 microns.

14. Carbonate slate from Liguria, Italy. The Liguria slates have carbonate content (see microphotograph of 500 microns) of about 20%. However, this fact does not mean that these slates are more susceptible to weathering than other slates with carbonate contents much lower. The key factor is the specific mineralogy of the carbonate. This slate complies with the EN 12326 requirements, and constitutes a perfect material for roofing when used properly. Sample provided by Euroslate.

15. Slate from Benuza, Castilla y León, Spain. An Ordovician slate, fine-grained with some cubes of pyrite, with smooth surface and dark color. This is a classic roofing slate, i.e., a slate from the green schists facies made of quartz, chlorites and mica. Sample provided by Cupa Pizarras S.A.

16. Slate from Hubei province, China. Fine-grained slate, light colored with a marked tendency to acquire a reddish aspect which makes it very interesting for special cases, since this reddish does not seem to generate rust trails. Sample provided by the Laboratorio del Centro Tecnológico de la Pizarra.

17. Green phyllite from Lugo, Spain. This Cambrian phyllite is also a very special roofing slate, being used for some singular buildings such as the Shizuoka Convention Arts Center in Japan. It is quarried in several colors ranging from grey to green. This is the Verde Xemil variety. Sample provided by Pizarras Ipisa.

18. Slate from Villar del Rey, Badajoz, Spain. A very fine-grained slate with some pyrite cubes and a dark color, in fact this is the darkest slate quarried in Spain due to its content in graphite, up to 2%.  Sample provided by Pizarras Villar del Rey, S.A.

And please remember: There are no bad slates but bad uses. The slate should be used in accordance with the building and environment requirements, so it is critical to know and understand the rock we are dealing with.

Advertisements

Quality factors in slates – Part II

Grain size

The grain size of roofing slates is very small, similar to the clays. It is possible to distinguish two types of components depending on the grain size, the matrix (mica and chlorites) and the skeletal components (quartz and feldspar). The key factor is the components of the skeleton, not just the size of these grains, but their selection or uniformity in size (Figure 1). A roofing slate will have good fissility if their skeletal components have all similar size, whereas with diverse range of sizes the fissility is reduced.

Grafico ITGEeng

Figure 1. Relationship between slate components and grain size

Grain size also affects the external appearance, coarser slates have a more rough and irregular aspect, while the fine-grained slates have a more smooth and uniform aspect, and therefore brighter (Figure 2).

Figure 2. Comparision between a coarse grain slate (left) and a fine grain slate (rigth).

Figure 2. Comparision between a coarse grain slate (left) and a fine grain slate (rigth).

Textural homogeneity

By definition, a roofing slate should have a lepidoblastic texture (Figure 3). This term refers to the microscopic arrangement of the elements of the rock, which are strongly oriented along the direction of slaty cleavage or fissility. This texture must be uniform and consistent along the slate, otherwise the split process will be greatly hindered. In certain types of roofing slate, other textures can be found, but must always be homogeneous and continuous.

Figure 3. Classical lepidoblastic texture in a roofng slate (left). On the rigth, a slate with a coarser texture, which is called porphyro-lepidoblastic

Figure 3. Classical lepidoblastic texture in a roofng slate (left). On the rigth, a slate with a coarser texture, which is called porphyro-lepidoblastic

Presence of sedimentary layers

These sedimentary layers are mainly sandy levels, of thicker grain size, which were deposited when the sedimentary rock which subsequently result in the slate was formed (Figure 4), after metamorphic processes.

Figure 4. Deposition of sandy layers on the slate bulk during sedimentation.

Figure 4. Deposition of sandy layers on the slate bulk during sedimentation.

These layers can be recognized as bands of lighter colors. Since they have a grain size and texture different from the rest of the slate, they modify the homogeneity of the slate (Figure 5), so that their presence is undesirable in a good quality slate.

Figure 5. Sandy layers on a roofing slate bulk.

Figure 5. Sandy layers on a roofing slate bulk.

Aesthetic characteristics of roofing slates – part I

Color, brightness and texture

The aesthetic characteristics of roofing slates can be defined by the color, brightness and texture. These three parameters are to be taken into account when choosing a slate variety, but also are essential in case of replacement a slate tile in a roof due to repairing or restoration. Traditionally, both slate producers and customers have been referring to the color with somewhat vague terms, such as gray, gray-blue, black, etc. These terms can easily lead to confusion.

Today it is possible to measure color and brightness precisely on any object, including slates. One of the first jobs I did in slates was the measurement of these parameters in slates of the whole Iberian Peninsula. The results show a great uniformity in most of the slates.

CIELAB color space for the roofing slates from the Iberian Peninsula

CIELAB color space for the roofing slates from the Iberian Peninsula

Besides the color, the other two parameters that determine the aspect are brightness and texture. The brightness depends basically on the crystallization and orientation of the mica minerals, while the texture depends on the grain size and the traces of the deformation phases on the slate. The most characterisitc of these traces is the intersection between the slaty cleavage and the sedimentation and which forms the lineation. This structure is known among the miners as hebra (Spain) or longrain (UK), and has a decisive role in many of the properties of the slate tile.

In the Iberian Peninsula, and from a geological point of view, the Ordovician (ORDmid and ORDup) slates from Galicia and Leon present colors a bit lighter than the Devonian slates (DEV) of Villar del Rey in Extremadura, while Bernardos Precambrian (PRE) slates in Segovia are light gray, and finally Cambrian slates (CAM) from Lugo are light green.

Aspect of the slates from the Iberian Peninsula

Aspect of the slates from the Iberian Peninsula

Further reading

Cárdenes, V., Prieto, B., Sanmartín, P., Ferrer, P., Rubio, A., Monterroso, C., 2012. The influence of chemical-mineralogical composition on the color and brightness of Iberian roofing slates. J. Mater. Civ. Eng. 24, 460-467.

Precise color communication – Konica Minolta